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We propose a model for aggregation where particles are continuously growing by heterogeneous condensa-
tion in one dimension, and solve it exactly. We show that the particle size spectra exhibit a transition to
dynamic scaling c�x , t�� t−���x / tz�. The exponents � and z satisfy a generalized scaling relation �= �1+q�z
where the value of q is fixed by a nontrivial conservation law. We show that the value of 1+q is always less
than the value 2 for aggregation without condensation.
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I. INTRODUCTION

The formation of clusters by aggregation of particles is a
characteristic feature of many seemingly different processes
in physics, chemistry, biology, and engineering. Examples
include aggregation of colloidal or aerosol particles sus-
pended in liquid or gas �1–3�, polymerization �4�, antigen-
antibody aggregation �5�, and cluster formation in galaxies
�6�. This wide variety of applications has resulted in numer-
ous studies which reveal that, when chemically identical par-
ticles aggregate, almost always scale-invariant clusters
emerge. Note that due to the nonequilibrium nature of the
aggregation process the standard theoretical framework de-
veloped for equilibrium statistical physics is found redun-
dant. However, the application of stochastic theory is found
to be increasingly useful in capturing a wide class of non-
equilibrium phenomena.

Typically, nonequilibrium systems are described by the
rate equation approach, having the form of a master equation
which is often governed by some conservation principle. The
Smoluchowski equation for the kinetics of irreversible aggre-
gation is one such example, where the distribution function
c�x , t� of a particle of size x at time t evolves according to the
following integro-differential equation �7,8�:

�c�x,t�
�t

= − c�x,t��
0

�

K�x,y�c�y,t�dy

+
1

2
�

0

x

dy K�y,x − y�c�y,t�c�x − y,t� . �1�

Here, the kernel K�x ,y� is symmetric with respect to its ar-
gument and it determines the collision time in which a par-
ticle of size x collides with another particle of any size y and
they merge into a particle �aggregate� of size �x+y�. The first
term on the right-hand side of Eq. �1� describes the loss of a
particle of size x due to merging of particles of size x with
other particles of any size, while the second term describes
the gain of x due to merging of particles of size x−y with y.
The Smoluchowski equation has been studied extensively for
a large class of kernels satisfying K�bx ,by�=b�K�x ,y�. The
homogeneity exponent � is shown to play a crucial role in
classifying gelling and nongelling models. For instance, �
�1 describes the nongelling model whose dynamics is gov-
erned by the conservation of mass principle, and ��1 de-

scribes the gelation transition accompanied by the violation
of the mass conservation law �9,10�. Note, however, that,
despite the seemingly simple structure of Eq. �1�, it is solved
exactly for the nongelling model only for a constant kernel
�=0, and that solution was given more than 100 years ago
by Smoluchowski himself. Finding another exact analytical
solution of Eq. �1� for the nongelling model ���1� therefore
still remains an open challenge.

One of the reasons that the Smoluchowski equation was
so successful is that it has provided much of our theoretical
understanding about dynamic scaling and associated expo-
nents which are in agreement, at least qualitatively, with
those extracted from real experiments and numerical simula-
tions �11�. For instance, for ��1 it was shown that the dis-
tribution function c�x , t� exhibits dynamic scaling,

c�x,t� � t−���x/tz� with z � 0, �2�

in the long-time �t→�� large-size �x→�� limit where ����
is a scaling function whose argument �=x / tz is a dimension-
less quantity.

The exponents � and z satisfy a scaling relation �=�z
with �=2, which follows from the conservation of mass prin-
ciple. A scaling form like Eq. �2� is shared by an extraordi-
narily diverse range of other phenomena, not just aggrega-
tion, e.g., systems exhibiting self-organized criticality,
cluster growth in driven diffusive systems, fragmentation
processes, etc. �12,13�. The ubiquity of this scaling form sug-
gests the existence of a common underlying mechanism
which makes such seemingly disparate systems behave in a
remarkably similar fashion.

In addition to growth by aggregation, there exists a host
of other mechanisms �e.g., condensation, deposition, and ac-
cretion� whereby particles can grow continuously between
aggregations �14–17�. For instance, aerosol or colloidal par-
ticles are often not stable but evolve via aggregation and
condensation, leading to gas-to-particle conversion. How-
ever, when the concentration of particles present is high and
the supersaturation is low, the condensation is heterogeneous
in nature since, in this case, condensation takes place only on
the existing particles without forming new nuclei �1,16�.
Otherwise, the system may have sufficient number of impu-
rities, such as dirt or mist particles, which usually serve as
potential nucleation sites on which condensation takes place,
and the resulting process is known as homogeneous conden-
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sation. In the latter case, the gas starts condensing on such
nuclei and thereafter it is counted as a new particle, which
then may take part in aggregation processes with other par-
ticles in the system. However, in the present work we will
consider only the former case—heterogeneous condensation.
Such condensation-driven aggregation does play an impor-
tant role in the formation of the size spectra that ultimately
determine the various physical properties of the aggregates.
Motivated by this, we here propose a simple model which is
defined in the next section.

The rest of the paper is organized as follows. In Sec. II,
we present the definition of our model including its algo-
rithm. Interesting results from numerical simulation based on
the algorithm are presented in Sec. III. In Sec. IV, we pro-
pose a generalized version of the Smoluchowski equation
and the appropriate parameters to describe the evolution of
the distribution function c�x , t� following the rules set in the
definition of the model. In Sec. V we give an explicit time
dependent solution for c�x , t� and in Sec. VI we give its
scaling description to obtain various scaling exponents and
the solution for the scaling function. Finally, in Sec. VII, we
discuss and summarize the work.

II. MODEL

We assume that initially the system consists of a large
number of equal-sized chemically identical particles which
are assumed to be immersed in the gas phase. These par-
ticles, while in Brownian motion, are continuously growing
by heterogeneous condensation, leading to the gas-to-particle
conversion, and merge irreversibly with other similarly
growing particles upon encounter. To further specify our
model, we assume that the amount of net growth by conden-
sation of a given particle between collisions, in the most
generic case, is directly proportional to its own size. The
algorithm for one time unit of the model can then be defined
as follows.

�i� Two particles are picked randomly from the system
which mimics random collision via Brownian motion in one
dimension.

�ii� The sizes of the two particles are increased by a frac-
tion 	 of their respective sizes.

�iii� Their sizes are combined to form one particle.
�iv� The steps �i�–�iii� are repeated ad infinitum.
While the model is rather simple to define, the results it

offers are far from simple. In order to illustrate how the rules

of the model work for monodisperse initial conditions, we
give a simple example in Fig. 1 using an evolutionary-tree-
based approach. The state of the system at a given time is
fully described by the numbers in the corresponding box.
The evolution of these numbers is then described by a set of
such boxes at successive times along the possible trajectory,
e.g., 1→3→6→ and so on. The first salient feature of this
model is that the sum of all the numbers L in the successive
boxes keeps increasing continuously with t, revealing that
the conservation of mass law is clearly violated. Second, the
numbers in the different boxes represent the size or mass of
the aggregate and hence a given box can be characterized by
a distribution function c�x , t� of particles of linear size x at
time t.

III. NUMERICAL SIMULATION

In order to extract a couple of basic features of the model,
we have performed extensive numerical simulations based
on the algorithm �i�–�iv�. Perhaps it is worthwhile to recall
the work of Falk and Thomas, who in 1974 obtained the
molecular-size distribution by simulating the discrete version
of Eq. �1� �18�. The most crucial aspect of the stochastic
simulation is to find a way to define the time t. Note that the
time necessary for a particle to come into contact with an-
other particle should depend on the number of particles
present in the system. Indeed, ultimately it is the number
density of particles present in the system that should deter-
mine how fast or how slowly the process should proceed,
provided the collisions for aggregation of particles are inde-
pendent of their size, and hence we define the time t=1 /N. In
Fig. 2 we therefore have plotted ln�L�t�� against ln�t� for
different 	 and found a straight line with slope equal to 2	.
This implies that

L�t� � t2	, �3�

which immediately confirms that, for systems describing the
condensation-driven aggregation, conservation of mass prin-
ciple is always violated. In Fig. 3 we also have plotted
ln�s�t�� where s�t� is the mean particle size defined as

s�t� = L�t�/N�t� , �4�

against ln�t�, and again found a straight line with slope equal
to 1+2	 for all 	�0. We can thus write the following
growth law for the mean particles size:

t

4,1,1,1,1,1,1,1,1

4,4,1,1,1,1,1,1

1,1,1,1,1,1,1,1,1,1

3

4

10,1,1,1,1,1,1,1

22,1,1,1,1,1,1 10,4,1,1,1,1,1 10,4,1,1,1,1,1 4,4,4,1,1,1,1,1

8
7

6

1

2

5

16,1,1,1,1,1,1

FIG. 1. Schematic representa-
tion of the model for 	=1.
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s�t� � t1+2	. �5�

IV. ANALYTICAL MODEL

To solve the model analytically, we use the generalized
Smoluchowski �GS� equation

� �

�t
+

�

�x
v�x,t��c�x,t� = − c�x,t��

0

�

K�x,y�c�y,t�dy

+
1

2
�

0

x

dy K�y,x − y�c�y,t�c�x − y,t� ,

�6�

where v�x , t� is the velocity with which particles grow by
condensation. In the absence of the second term on the left-
hand side, Eq. �6� reduces to the classical Smoluchowski
�CS� equation as given in Eq. �1� whose dynamics is gov-
erned by the conservation of mass law �7�. The GS equation
does not automatically describe our model unless the expres-
sions for the growth velocity v�x , t�, the collision time 
, and
the kernel K�x ,y� are suitably specified. To obtain a suitable
expression for v�x , t�, it is worthwhile to recall the definition
of the mean growth velocity,

average growth velocity =
net growth size �x

elapsed time �t
. �7�

According to rule �ii�, the net growth of a particle of size x
between collisions is �x=	x. On the other hand, a simple
dimensional analysis of Eq. �6� reveals that the inverse of
	0

�K�x ,y�c�y , t�dy is the collision time �t=
�x� during which
the growth 	x takes place. The mean growth velocity be-
tween collisions therefore is

v�x,t� =
	x


�x�
= 	x�

0

�

dy K�x,y�c�y,t� . �8�

On the other hand, rule �i� says that a particle collides with
any particle in the system, irrespective of their size with an
equal a priori probability. We therefore should choose the
collision kernel independent of the size of the colliding par-
ticles, i.e., we choose a constant collision kernel or

K�x,y� = 2, �9�

for convenience.
To check our results from the numerical simulation, we

now incorporate the kth moment defined as

Mk�t� = �
0

�

xkc�x,t�dx with k � 0, �10�

together with Eqs. �8� and �9� in Eq. �6� to write the rate
equation for Mk�t� in the closed form

dMk

dt
= 


r=0

k �k

r
�MrMk−r + 2�	k − 1�M0Mk, �11�

for integer k value. We can readily solve it for the first mo-
ment M1�t��L�t� to give

L�t� = �1 + N�0�t�2	. �12�

In the long-time limit it grows following the same relation as
in Eq. �3�, which confirms a perfect matching with our nu-
merical simulation. On the other hand, solving Eq. �11� with
n=0, we find that
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FIG. 2. ln�L� vs ln�t� �where t=1 /N since the number of par-
ticles present ultimately determines how fast or slowly the aggre-
gation process should proceed� using simulation data from one re-
alization. The solid lines represent theoretical predictions with
gradient equal to 2	.
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FIG. 3. ln�s� vs ln�t� using data collected from numerical simu-
lation. Data points �denoted by symbols� for a given curve represent
one realization of our simulation. The solid lines represent theoret-
ical predictions with gradient equal to 1+2	.
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N�t� =
N�0�

1 + N�0�t
, �13�

and hence asymptotically the total number N decays follow-
ing the same power law,

N�t� � t−1, �14�

with the same exponent as that of the CS equation. This is
consistent with the assumption that the new particles are not
nucleated. A similar temporal behavior has also been ob-
served in other theories and experiments �1,16�. One can use
the two solutions for L�t� and N�t� in Eq. �4� to find the
growth law for the mean particle size s�t�,

s�t� � �1 + N�0�t�1+2	. �15�

Therefore, one can immediately find that in the long-time
limit the mean particle grows algebraically following the
same relation as in Eq. �5�, which further confirms that the
GS equation together with the constant kernel and the growth
velocity do describe the model in question.

V. EXACT SOLUTION

To solve the GS equation exactly, we define the Laplace
transformation �p , t� of c�x , t� by

�p,t� = �
0

�

dx e−pxc�x,t� , �16�

and its inverse transform to obtain c�x , t� by

c�x,t� =
1

2�i
�

�−i�

�+i�

dp epx�p,t� , �17�

with Re�p���. Differentiating Eq. �16� with respect to t and
using Eq. �6�, we find that �p , t� obeys the following non-
linear partial differential equation:

��p,t�
�t

+ 2N�t��1 − 	p
�

�p
��p,t� = 2�p,t� , �18�

where, of course,

N�t� = �0,t� = M0�t� . �19�

Consequently, we need to solve Eq. �18� subject to the initial
condition

�p,0� = �
0

�

dx e−pxc�x,0� � f�p� . �20�

We incorporate the solution for N�t� from Eq. �13� in Eq.
�18� and then rewrite it as follows:

��p,t�
�t

− � 2	N�0�p
1 + N�0�t� ��p,t�

�p
= 2�p,t� −

2N�0�
1 + N�0�t

�p,t� .

�21�

To solve this equation we use the method of characteristics,
in which one usually writes

d

ds
=

�

�t

�t

�s
+

�

�p

�p

�s
. �22�

Comparing the above two equations, we get

�t�s�
�s

= 1,

�p�s�
�s

= −
2	N�0�

1 + N�0�t
p�s� . �23�

The quantity  thus evolves following the ordinary nonlinear
equation

d

ds
= 2 −

2N�0�
1 + N�0�t�s�

 . �24�

Solving Eqs. �23� subject to initial data

t�s = 0� = 0,

p�s = 0� = p0,

�s = 0� = f�p0� �25�

yields

t = s ,

p0 = p�1 + N�0�s�2	. �26�

We can transform Eq. �24� into a linear equation by setting

 =
1

�
, �27�

to obtain

d�

ds
−

2N�0�
1 + N�0�s

� = − 1. �28�

We solve it by using the integrating factor I= �1+N�0�s�−2

and find that

��s,p0� = �1 + N�0�s���1 + N�0�s���0,p0� − s , �29�

and hence using it back in Eq. �27� we get

�p,t� =
f„p�1 + N�0�t�2	

…

�1 + N�0�t�2�1 −
f„p�1+N�0�t�2	

…t

1+N�0�t �
. �30�

Note that, according to the definition of our model, we are
interested in systems containing a large number of chemi-
cally identical particles of unit size and hence without loss of
generality we may choose the monodisperse initial condition

c�x,0� = ��x − 1� , �31�

which gives

f�p� = e−p and N�0� = 1. �32�

To find c�x , t� we substitute Eq. �30� in the definition of the
inverse Laplace transform �Eq. �17�� and then a short calcu-
lation yields
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c�x,t� =
t�1 + t�−2	x−1

�1 + t�2+2	�1 + t��1 + t�−2	x−1
, ∀ t � 0. �33�

We can readily see that in the limit 	→0 we get the well-
known solution of the CS equation �7,8�.

VI. SCALING DESCRIPTION

Finding scaling or self-similar solutions is, more often
than not, of utmost importance. These are essentially the so-
lutions in the long-time limit where the distribution function
c�x , t� takes a simple universal form in the sense that it is
independent of initial conditions. Most experimental systems
evolve to the point where such behavior is reached. Taking
the limit t→� and using the identity

lim
n→�

�1 +
1

n
�n

= e �34�

in Eq. �33�, we get

c�x,t� � t−�2+2	� exp�−
x

t1+2	� . �35�

The structure of the solution given above is highly instruc-
tive as it satisfies

c�b�1+2	�x,bt� = g�b�c�x,t� , �36�

where

g�b� = b−�2+2	�. �37�

It implies that if we increase the units of measurement of x
by a factor of b�1+2	� and that of time by a factor of b, the
numerical value of c�x , t� is decreased by a factor of g�b�.
The existence of scaling in the present case means that a plot
of c�x , t� / t−� vs x / tz collapses into one graph for all initial
conditions. Mathematically, a solution of this kind is called
scale invariant and it implies that the system lacks a charac-
teristic length scale. A further testament to the fact that the
solution given by Eq. �35� exhibits scaling is that it has ex-
actly the same form as in Eq. �2�, and hence by comparing
the two we can extract the scaling exponents

� = 2 + 2	, z = 1 + 2	 , �38�

and the scaling function

���� = e−�. �39�

We can now substitute Eq. �35� in Eq. �10� to obtain the
asymptotic solution for the kth moment

Mk�t� � t−��k�, �40�

where

��k� = 1 − �2	 + 1�k . �41�

We thus see that the exponent ��k� is linear in k which means
that there exists a constant gap between exponents of con-
secutive k, and hence we can define the mean cluster size

s�t� =
Mk�t�

Mk−1�t�
for integer k � 1. �42�

The mean particle size s�t� therefore grows algebraically
with an exponent equal to ��k�−��k−1�=1+2	, which is
exactly the same as in Eq. �5� obtained by numerical simu-
lation. Using Eq. �5� in Eq. �2�, we can therefore write yet
another widely used form of the scaling ansatz,

c�x,t� � s�t�−��„x/s�t�… , �43�

with the mass exponent �=� /z, and hence according to Eq.
�38� we get

� =
2 + 2	

1 + 2	
. �44�

The expression for the exponent ��q� reveals that the mo-
ment Mq�t� becomes time independent if

q =
1

1 + 2	
∀ 	 � 0, �45�

since ��q�=0. Incorporating the value of q in Eq. �44� we
immediately find that

� = 1 + q , �46�

which is always less than 2 for all 	�0. We can recover the
classical value �=2 of aggregation without condensation by
setting 	=0.

VII. DISCUSSION AND SUMMARY

One may solve the GS equation for other growth veloci-
ties following the same method. Cueille and Sire, in fact,
solved the GS equation for v=1 and v=x exactly and found

c�x,t� �
2

t2 ln t
e−x/t ln t, c�x,t� �

4

t2ete
−2x/tet

, �47�

respectively, for constant kernel K�x ,y�=1 �15�. As we have
the exact solutions for three different growth velocities, we
find it worthwhile to compare them and see their dissimilari-
ties. First of all, note that one cannot choose v=1 and v=x
and describe them as the growth velocities between colli-
sions because the elapsed time �t during which the net
growth occurs has not been chosen to be equal to the mean
collision time 
=1 /	0

�K�x ,y�c�y , t�dy. Second, neither of the
two solutions given in Eq. �47� can be expressed in the form
of Eq. �36� or in the form of Eq. �2� and hence they violate
scaling. Third, one finds that the kth moment of both solu-
tions �v=1 and v=x� no longer exhibits a power law against
time t, which is a further testament to the violation of scal-
ing. Finally, when we choose v=0 and v=	x /
, the dynam-
ics of the systems are governed by some conservation laws
and the scaling exponents are in fact fixed by these laws.
However, there is no such conservation law in the case of
v=1 or v=x and the scaling is violated and hence exponents
are nonexistent.

In this paper, we have presented an exactly solvable ana-
lytical model to study the kinetics of aggregation of particles
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growing by heterogeneous condensation with velocity v
=	x /
. As a result of the additional growth by condensation,
we found an algebraic growth law for the mean particle size
s�t�� t1+2	 instead of a linear growth s�t�� t in the absence
of growth by condensation. The size spectra of the aggre-
gates formed by the condensation-driven aggregation is
shown to exhibit universal scaling c�x , t�� t−�z��x / tz� with
mass exponent �=1+q, which is always less than its classi-
cal counterpart �=2, and kinetic exponent z=1+2	. We
found the exact and explicit solution for the scaling function
�����e−�. Interestingly, one obtains the same scaling func-
tion e−� for aggregation without condensation. The difference

appears only in the z values of the scaling argument �=x / tz

since the two systems have different z values. In this sense,
the form of the scaling function is universal in nature. We
have shown that the transition to such scaling is accompa-
nied by the emergence of a nontrivial conservation law, that
is, Mq�t��const. We believe that the present work will at-
tract a renewed interest in the subject. The ideas developed
in this paper could be taken further by investigating the same
model for a generalized homogeneous aggregation kernel
K�x ,y�= �xy��/2 which we intend to do in our future endeav-
ors.

�1� S. K. Friedlander, Smoke, Dust and Haze �Wiley, New York,
1977�.

�2� M. Thorn and M. Seesselberg, Phys. Rev. Lett. 72, 3622
�1994�; M. L. Broide and R. J. Cohen, ibid. 64, 2026 �1990�.

�3� S. Melle, M. A. Rubio, and G. G. Fuller, Phys. Rev. Lett. 87,
115501 �2001�.

�4� E. Ben-Naim and P. L. Krapivsky, J. Phys.: Condens. Matter
17, S4249 �2005�.

�5� D. Johnstone and G. Benedek, in Kinetics of Aggregation and
Gelation, edited by F. Family and D. P. Landau �North-
Holland, Amsterdam, 1984�.

�6� J. Silk and S. D. White, Astrophys. J. 223, L59 �1978�.
�7� M. von Smoluchowski, Z. Phys. Chem., Stoechiom. Ver-

wandtschaftsl. 92, 215 �1917�.
�8� S. Chandrasekhar, Rev. Mod. Phys. 15, 1 �1943�.
�9� R. M. Ziff, E. M. Hendriks, and M. H. Ernst, Phys. Rev. Lett.

49, 593 �1982�; P. G. J. van Dongen and M. H. Ernst, ibid. 54,

1396 �1985�.
�10� A. A. Lushnikov, Phys. Rev. Lett. 93, 198302 �2004�.
�11� T. Vicsek, Fractal Growth Phenomena, 2nd ed. �World Scien-

tific, Singapore, 1992�.
�12� Scale Invariance, Interfaces, and Non-Equilibrium Dynamics,

edited by A. McKane, M. Droz, J. Vannimenus, and D. Wolf,
NATO Advanced Studies Institute, Series B: Physics �Plenum,
New York, 1995�, Vol. 344.

�13� Z. Cheng and S. Redner, Phys. Rev. Lett. 60, 2450 �1988�.
�14� P. L. Krapivsky and S. Redner, Phys. Rev. E 54, 3553 �1996�;

A. A. Lushnikov and M. Kulmala, ibid. 63, 061109 �2001�.
�15� S. Cueille and C. Sire, Europhys. Lett. 40, 239 �1997�; Phys.

Rev. E 57, 881 �1998�.
�16� P. Meakin and F. Family, J. Phys. A 22, L225 �1989�.
�17� P. Tullet, Phys. Educ. 34, 140 �1999�.
�18� M. Falk and R. E. Thomas, Can. J. Chem. 52, 3285 �1974�.

M. K. HASSAN AND M. Z. HASSAN PHYSICAL REVIEW E 77, 061404 �2008�

061404-6


